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Abstract: A transcription factor regulates gene expression in crop plants at the transcription level. Typically,
a transcription factor comprises domains that facilitate regulatory activities, including a transcription regula-
tory region, a DNA-binding region, an oligomerization site, and a nuclear localization signal region. All do-
mains determine the functional activities of genes, including gene function, characteristics, nuclear localiza-
tion, and regulation of transcription factors. Transcription factors inhibit or activate the expression of a gene
through binding the functional domain of the promoter cis-acting element or their interaction with other pro-
teins. However, Transcription factor function and structure have become crucial roles in plant molecular biol-
ogy in the upcoming breeding research era.
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Transcription factors are trans-acting factors or proteins that interact with cis-regulatory ele-
ments at the promoter region of a gene (Khan et al. 2023). Their interaction acts as a switch-on /
switch-off system for the gene at the transcription level (Cramer 2019). Many transcription factor
genes have been studied or cloned in rice that control transcription activities in the genome for acti-
vation/ suppression of traits such as cold tolerance, high salt, heavy metal toxicity, bio fortification,
osmotic stress, pathogenic resistance, insect pest, heat stress, and some to change the plant architec-
ture. These transcription factors control the quantity of expression of all living and nonliving things.
The structure of transcription factors shows that they have four functional areas: a DNA-binding re-
gion, a transcriptional regulatory region (which can be either an activation or inhibitory region), and
a nuclear localization signal (Bushweller 2019; Cramer 2019). These functional regions control the
transcriptional regulation by binding with promoter cis-elements or by interacting with the domains
of other transcription factors (Khan et al. 2023). Most transcription factors only have one area where
they can bind to DNA (Mitsis et al. 2020). But some transcription factors, like GT2 AP2 from Ara-
bidopsis thaliana and rice (Oryza sativa), have two places where they can connect to DNA. Some
transcription factors don't have DNA-binding regions or transcriptional control regions. By working
with transcription factors that have the above functional domains, they control gene transcription
(Bushweller 2019).

2. Structure and Function of Transcription Factors

2.1. DNA Binding Region

The DNA-binding region, also called the DNA-binding domain, is the chain of amino acids that
the transcription factor uses to find and attach to the DNA part that acts in cycles. (Jie et al. 2020).
The amino acid sequence within DNA DNA-binding region of a specific transcription factor type
remains consistent. The parts of plant transcription factors that usually bind DNA are the bZIP do-
main, the zinc finger domain, the MADS domain, the 1Y C domain, the 4MYB domain, the homeo-
domain, and the AP2/EREBP domain 7. Several subgroups can be made out of some of these domains
based on the count and position of conserved amino acid residues in these distinct regions. For in-
stance, the arrangement of cysteine (C) and histidine (H) residues can be used for subclassification.
Transcription factors with a zinc finger region can be broken down into three groups such as C, H,
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and C. Recently, the HC, C, CHC, and CHCS5 subclasses have been identified as new DNA-binding domains in plant transcription
factors. These include the ARF region of Arabidopsis thaliana ARFI transcriptional factor in maize (Zea mays) VP1 and the B3 region
of PvAIf transcription factor in beans (Phaseolus vulgaris). They are very good at finding and attaching to cis-acting elements because
of their DNA-binding domain's specific amino acid patterns. (Hajheidari and Shao-Shan 2022).
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Figure 1. A schematic transcription factor structure model.
2.2 Transfer control area

2.2.1 Transcriptional Activation Region

Transcription factors differ in their transcriptional regulatory regions, which include transcriptional activation and transcription
repression domains. (Cramer, 2019). These regions determine functional differences and identify various types of transcription factors
from animals and Saccharomyces cerevisiae. (Bao Gia, Mark A Stamnes, and Yu Li et al. 2021). Examples include glutamine-rich
domains in SPI, proline-rich domains in CTF/NF-I, and acid activation regions in GAL4 and VP16GCN4. The regions typically contain
30 < 100 amino acid residues outside the DNA-binding region. Higher plant transcription factors, such as VP1 and PVALF, regulate
storage protein gene expression in various plants (Nifioles et al. 2022). Their N-terminal acidic conserved amino acid sequences have
transcriptional activation ability, and their homology analysis shows high homology with yeast transcription factor GCN4 and virus
transcription factor VP16. Typical plant transcriptional activation regions are rich in acidic amino acids, proline or glutamine, and GBF
transcription factors. However, high amino acid content does not necessarily indicate an important role (Ahmed et al. 2021).

2.2.2 Transcriptional Inhibitory Region

Bean PVVALF transcription factor can trigger the expression of the cotyledon storage protein gene DLEC2. The ROMZ2 transcription
factors of bean bZIP can combine with the regulatory element of DLEC2 to suppress the gene-activating function performed by the
PVALF transcription factor. Once the N-terminal bZIP domain ROM2 of ROM2 is removed, the PVALF activation activity will be
lost, and the ROM2 and PVALF activation domain junction proteins of the N-terminal bZIl domain will be removed to activate the
expression of DLEC2, which indicates that there is a transcriptional inhibitory region of 121 pairs of inhibitory bell barley (Hordeum
spontaneum) in the removed ROM2N- terminal region. The study of VVP1 transcription factors expressed by a-amylase gene showed
that VVPI also contains a domain 1131 that suppresses transcription, although many experimental results show the presence of transcrip-
tional inhibitory regions in transcription factors (Cramer 2019). However, the structure and mechanism of the transcription factor inhi-
bition region may be as follows: (1) Once attached to the specific promoter sites, it can hinder the binding of other transcription factors:
(if) it may inhibit transcription by repressing the action of other transcription factors, and (iii) modify advanced DNA structure (high-
order structure) such that transcription is blocked.

3. Nuclear Positioning Signal Area

The nuclear localization signal region (NLS) is a region in transcription factors that coordinates their importation into the nucleus.
(Lu et al. 2021). It is found in diverse transcription factors, such as GT-2 in rice, O2 in HSFA1-2 corn, tomato, and PS-1AA4 and PS-
IAAG in pea. The number of NLS varies in different transcription factors, with certain NLS, including as O2 transcription factor NLS,
also present in other functional regions. (Marathe, Erich Grotewold, and Marisa S Otegui 2024). BZIP transcription factor O2 has two
NLS, An and B, located between 101 < 135 and 223 x 254 amino acid residues. The B signal region is in the same area as the DNA-
binding region, indicating that the NLS plays an independent role. The B signal region in the DNA-binding region can transfer tran-
scription factors more effectively into the nucleus. (Suter 2020).
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https://pubmed.ncbi.nlm.nih.gov/?term=Stamnes+MA&cauthor_id=34591857
https://pubmed.ncbi.nlm.nih.gov/?term=Li+Y&cauthor_id=34591857
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4. Oligomerization Sites

An oligomerization site is a functional place where different transcription factors can work together (Lai et al. 2019). They have
fairly stable chains of amino acids, and most of them take on a certain shape in space and are connected to the DNA-binding area. In
the case of MADS transcription factors, the oligomerization area has two a-helixes and two B-folds. The oligomerization area of bZIP
transcription factors has a zipper structure, and the oligomerization area of bHHL transcription factors has a spiral-ring-helix structure.
The yeast two-hybrid system (Two-hybrid system) showed that the B-Peru transcription factor in maize might interact with the C1
transcription factor's DNA-binding area, making it easier for C1 and DNA to bind (Bai et al. 2020). Genetic research and temporary
expression studies (transient expression assay) also reveal the C1 transcription factors have an impact only, in activating transcription
when they bind to B-Peru. Its spiral-ring-helix domain is very important for B-Peru to connect to C1 and help start transcription. The
oligomerization region of transcription factors does affect their activity, according to the previously described research, even though
the precise role of the helix-ring-helix domain among B-Peru and C1 is still unclear (Lai et al. 2019).

the B3 region of PVAIf transcription factor in beans (Phaseolus vulgaris). They are very good at finding and attaching to cis-acting
elements because of their DNA-binding domain's specific amino acid patterns. (Hajheidari and Shao-Shan 2022).

5 The Activity of Transcription Factors

The regulation of transcription factor genes is regulated by cell development, the external environment, and other factors, and the
activity of transcription factors is also regulated by many factors (Weidemdller et al. 2021).

5.1 Post-translation Modification

The activity of transcriptional factors is regulated greatly by post-translational modification. In addition to regulating the nuclear
import of transcription factors, the phosphorylation modification of translated proteins can alter the activity of transcription factors or
their capacity to bind to DNA (Zhang et al. 2019). For instance, purified casein kinase 1l (CKII)-catalyzed phosphorylation and the
nuclear extract of Arabidopsis thaliana can enhance the DNA binding capacity of GBF1 transcription factors in Arabidopsis thaliana
(Dorone 2020). Phosphorylation following translation also controlled the activity of the O _ 2 (OPAQUE-2) transcription factor, which
controls the expression of the gliadin gene in maize seeds. It was found that eight amino acid sites in O2 could be phosphorylated by
CKII. Six of these loci were located in the transcriptional activation region. SDS-PAGE electrophoresis also showed that there were
many phosphorylation homologues (phosphorylated isoform) in O2 (Channaveerappa et al. 2019). Among them, only non-phosphor-
ylation homologues (non-phosphorylated isoform) and 1 <2 amino acid residues phosphorylation of low phosphorylation homologues
(hypophosphorylated isoform), and DNA binding to its high phosphorylation homologues (hyperphosphorylated isoform) cannot bind
to DNA, but must be treated with phosphatase before they can bind to DNA (Gil and Paola 2019). The proportion of different phos-
phorylation forms still changed day and night. During the day, the O2 content of low phosphorylation homologues was high, the storage
protein gene expression was active, the nocturnal high phosphorylation homomorphism content increased, the activation ability to gene
transcription decreased, and the storage protein synthesis decreased (Richardson and Ryan 2023; Wani and Vinay 2020). Organisms
can ensure the regular and quantitative synthesis of proteins through the diurnal variation of this O2 phosphorylation homologue (Tan
et al. 2020).

5.2 Nuclear Localization

The transcription factors play a role in the nucleus; it is very important to regulate the process of their entry into the nucleus
(Janota et al. 2020). The process of transcription factor entering nucleus is regulated by external stimulation, cell cycle, development
stage and so on (Theilgaard-Mdnch et al. 2022; Wang 2021). Although nuclear pores can allow 40-60 ku proteins to spread through,
this study have shown that the process of proteins passing through nuclear pores is mostly active.

The process of transcription factors entering the nucleus is carried out through one to several nuclear localization signal regions
(Liu et al. 2022). NLS first binds to a nucleophilic protein located at the nuclear pore by interacting with the receptor protein NBP
(NLS-binding protein), and then moves through the nuclear passage with the help of the transfer function of the nucleophilic protein
(Jardine 2020). The transcription factors without NLS region enter the nucleus by interacting with the transcription factors with NLS
region (Lu et al. 2021). The process of transcription factor entry is also affected by post-translation phosphorylation modification and
intermolecular interaction (Chen et al. 2020). The phosphorylation and dephosphorylation of NLS and its side sequences is an important
way to regulate the movement of transcriptional regulator across the nuclear envelope (Mufioz-Diaz and Julio 2022).

5.3 Dimerization Effect

Transcription factors are crucial for plant development and growth by modulating the expression of diverse functional genes
(Khan et al. 2018). They interact with other proteins through oligomerization regions, affecting their ability to bind to DNA, binding
mode, and location in cells. Plant transcriptional regulators, including O2, PvALF, VP1, and EMBP1, contain bZIP domains and can
be regulated by forming heterodimers with other proteins (Nifioles et al. 2022). Three bZIP proteins (OsZIPs) were isolated from rice,
which may enhance the association of EMBP1 to the EM promoter, while Histone H 1 has shown to increase the EMBP-1 interaction
with its specific promoter binding site (Nifioles et al. 2022).

Plants respond to various environmental, tissue, development signals during growth and development, requiring precise regulation
of gene expression (Scheres and Wim 2017). The expression of the seed storage protein gene is specifically regulated by the tissue and
development stage, and transcriptional regulation is essential for agricultural production. Plants also respond to environmental factors
like drought, high salt, hormones, diseases, and cell development in vivo, activating RNA polymerase Il transcriptional complex
through trans-acting factors (Forni, and Bernard 2017). These factors activate the transcription and expression of genes, affecting phys-
iological and biochemical aspects of the appropriate regulatory response.
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Plants contain a diverse range of transcription factors, with 15% of genes encoded or may encode transcription factors. In past
studies, over 30 bZIP transcription factors and over 40 AP2 / EREBP transcription factors have been isolated in Arabidopsis (Ma et al.
2024). Some transcripts are capable of regulating multiple genes, affecting the progress of diverse physiological and biochemical mech-
anisms (Li et al. 2018).

5.4 BZIP Transcription Factors

BZIP transcription factors is a type of transcriptional regulators which is found in animals, plants and microorganisms (Aslam et
al. 2019). Plants include corn 02, Arabidopsis PosF21, wheat and rice HBP-1 and so on. The common characteristics of bZIP tran-
scription factors are as follows: (1) the basic domain that binds to the specific DNA sequence; (ii) the Leucine zipper region involved
in polymerization is closely related to the alkaline region; (iii) the N-terminal of the transcription factor contains acid activation region;
(iv) binds to DNA in the form of dimer, and the alkaline region of peptide chain N-terminal binds directly to DNA. The core sequence
of bZIP transcription factor recognition is ACGT, such as CACGTG (G box), GACGTC (C box), TACGTA (A box) and so on (Han
et al. 2023). Few genes are triggered by light or abscisic acid (ABA) contain these components. G box elements are typically found in
genes activated by ABA, auxin, jasmonic acid and salicylic acid, and also the most frequent cis acting elements in photoinduced genes.
Avrabidopsis HY5, GBF2 and other bZIP transcripts can precisely attach to G box elements and trigger the transcription of photoinduced
genes (Stafen et al. 2022).

02 transcription factor is not only a specific transcription factor in plant endosperm, but also an important regulator of seed storage
protein synthesis (Cao et al. 2022). Its molecular mass is 47 ku, and comprises of all the three characteristics region of bZIP transcription
factors, and the transcriptional activation region is located among amino acid residues 41-91 at the N-terminal. O2 not only control the
developmental and tissue specific expression of crucial rice storage proteins such as a-gliadin, but also regulated the expression of
cyPPDKI gene in corn b < 32, which encodes a ribosomal inactivated egg (ribosome-inactivating protein) homologue, while cyPPDK1
encodes pyruvate orthophosphate dikinase (cytoplasmic pyruvate orthophosphate dikinase) in cytoplasm. Recently, transcription fac-
tors similar to corn O2 have been found in Sorghum vulgare, wheat, Coix (Coix lacryma-jobi L.) and other plants (Wang et al. 2023).
Moreover, some experiments have shown that there are transcription factors similar to O2 inrice, so it is speculated that O2 transcription
factors may widely exist in cereal crops to monitor the expression of storage protein genes (J. Wang, Chen, Zhang, Meng, and Wei
2020). While, O2 can facilitates the expression of various genes at the same time, its attaching sites are different in different gene
promoter regions. For example, in 22 ku gliadin gene promoter, it binds to TCCACGTAGA site, the O2 binding site in rice GluB gene
promoter is GCN4 element (TGAGTCA), while in corn bo32 gene promoter region, multiple O2 binding sites are found (Kaur 2020).
The results show that O2 can not only act on its cis-acting elements in the form of homodimer, but also bind to other proteins in rice
(such as PBF-1, OHP1, etc.) in the form of heterodimer. O2 can be phosphorylated by nucleic acid extract of rice endosperm or recom-
binant of Arabidopsis thaliana CK 11, and there are many phosphorylation sites in the main activation region of O2 (Rahman, 2019;
Yang et al. 2022). Therefore, it is suggested that phosphorylation role is important in the regulation of O2 activity.

5.5 AP2/EREBP Transcription Factors

The research aims to study and explain the structure and functional activities of plant transcription factors, namely, the
AP2/EREBP family, in Arabidopsis thaliana and tobacco (Nicotina tabacum) (Xie et al. 2019). Regulation of plant cell cycles, growth,
development and reaction to the environmental stress are some of the critical processes that are orchestrated by these transcription
factors. They are divided into two separate subfamilies: AP2 (APETALAZ2) and EREBP (ethylene-responsive element binding protein).
AP2 transcription factors contain two AP2/EREBP domains, while EREBP transcription factors have one AP2/EREBP domain, which
regulates plant molecular response to hormones, pathogens, low temperature, dry early, and high salt (Feng et al. 2020; Ku, Sintaha, et
al. 2018; W. Xie et al. 2022).

The N-terminal region of AP2/EREBP domain is alkaline hydrophilic and Consists of three B-folds, which play a key role in
identifying cis-acting elements (Ma et al. 2024; Zhou et al. 2024). The C-terminal domain also has an Amphiphilic o helix, which is
expected to mediate protein-protein interaction with other proteins as transcription factors, as well as direct DNA binding.

The members of the EREBP transcription factors, tobacco EREBP1-4, tomato Pti4-6, Arabidopsis RAV1-2, AtEBP, AtERF1,
DREB1A-C, and DREB2A-B have been found to be related to cell development, hormone, disease resistance, low temperature and
drought, and high salt (Zuo et al. 2023). Arabidopsis thaliana factor, the AtERF is specifically bound to the GCC-box binding domain
(GCC-box binding domain, GBD), which is combined with the large trench of its target sequence GCC-box by forming three reverse
B-lamellae (C.-Y. Chen, Lin, Chen, and Cheng 2020).

Arabidopsis transcriptional factors such as the DREB1A and DREB2A modulate the transcription of low temperature tolerance,
drought tolerance and high salinity genes (Meena et al. 2022; Zhang and Xia 2023). Their promoter regions contain dehydration-
responsive element (DRE), making DREB1A overexpressed in transgenic Arabidopsis thaliana. Amino acid sequence analysis showed
that both DREB transcription factors contained a C-terminal acidic transcriptional activation region and an N-terminal alkaline nuclear
localization signal region (Yadav et al. 2023; Yu et al. 2024).

5.6 Activation and Inhibition of VP1 (Viviparous.1) Transcription Factors

The study reveals that a transcription factor, such as the corn transcription factor, can both activate and inhibit transcription
(Kimotho, Baillo, and Zhang 2019). VP1 is a typical transcription factor that can activate wheat EM gene and corn C1 gene, as well as
suppress the activity of the a-amylase gene in barley (Matilla 2024). The activation mechanism of EM gene and C1 gene by VVP1 varies.
Clisatranscription factor that regulates several enzyme genes involved in anthocyanin production, and its expression can be modulated
independently by VP1, by the hormone ABA, or by exposure to the light (Kim et al. 2023). VVP1 can activate EM gene transcription
through Sph-like factor or RY factor, mainly by acting on another protein EMBPL1 to activate EM gene transcription. EMBPI, a bZIP
transcription factor, that specifically interact with to two G-box- like motifs in the promoter of the EM gene. Though the B2 domain of
VP1 has a weak non-specific DNA interaction ability, but it can greatly modulate the attachment of EMBP to Emla and Emlb in the



Pharmabiologia 2025, 1(1) 5

target G-box motif. While the protein GF14 present in rice indicates the possibility of its involvement in the EM gene expression
activation (Huang et al. 2022). VP1 also suppresses the transcription of the a-amylase gene when seed germination accours, indicating
that the inhibition and activation mechanism of VVP1 on transcription are different and carried out independently (Zheng et al. 2019).

6. Conclusions

Transcription factors in a plant act as an activator or repressor of inducible gene expression by interacting with DNA and other
associated proteins. The specificity of a particular cis-acting sequence to a transcription factor is determined by its DNA-binding do-
main, whereas transcription is either promoted or suppressed by the transcriptional regulatory domain. In addition, its activity is also
regulated by nuclear localization and oligomerization. Over the past decade, molecular biology has increasingly started to focus on cis-
regulatory elements in the promoters, transcription factors, and the resulting processes rather than functional genes. The identification
and characterization of the structure and function of transcription factors is one of the major contents to elucidate the regulation mech-
anism of gene expression under varied conditions. Revealing the precise mechanism of the interaction between transcription factors
and their connection with DNA, we may artificially control the expression of specific genes, so that plant gene transformation can gain
favorable outcomes.
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