Molecular Concept of Transcription Factor in Crop Plant

Authors

  • Md. Solaiman Hossain Hybrid Rice Division, Bangladesh Rice Research Institute, Gazipur, Dhaka, Bangladesh Author
  • Afia Sultana Ruma Farm Management Division, Bangladesh Rice Research Institute, Gazipur, Dhaka, Bangladesh Author
  • Kamal Adil PARC-Mountain Agricultural Research Station Chilas (MARS), Gilgit Baltistan, Pakistan Author
  • Rao Muhammad Samran Gul Department of Plant Breeding and Genetics, College of Agriculture, University of Sargodha, Punjab, Pakistan Author
  • Ijaz Rasool Noorka Department of Plant Breeding and Genetics, College of Agriculture, University of Sargodha, Punjab, Pakistan Author

Keywords:

transcription factor , DNA binding region , cis-acting element , rice

Abstract

A transcription factor regulates gene expression in crop plants at the transcription level. Typically, a transcription factor comprises domains that facilitate regulatory activities, including a transcription regulatory region, a DNA-binding region, an oligomerization site, and a nuclear localization signal region. All domains determine the functional activities of genes, including gene function, characteristics, nuclear localization, and regulation of transcription factors. Transcription factors inhibit or activate the expression of a gene through binding the functional domain of the promoter cis-acting element or their interaction with other proteins. However, Transcription factor function and structure have become crucial roles in plant molecular biology in the upcoming breeding research era.

References

Ahmed, F. F., Hossen, M. I., Sarkar, M. A. R., Konak, J. N., Zohra, F. T., Shoyeb, M., and Mondal, S. 2021. Genome-wide identi-fication of DCL, AGO and RDR gene families and their associated functional regulatory elements analyses in banana (Mu-sa acuminata). PloS one 16: 1-23. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0256873

Aslam, Roohi, Qamar Wali, Muhammad Sarwar, Muhammad Naeem, and Muhammad Abu Bakar Zia. 2019. A comprehensive overview of transcription factors (WRKY, NAC and BZIP) in plants. Journal of Biosciences 14: 495-509. http://dx.doi.org/10.12692/ijb/14.1.495-509

Bai, Hui, Zhenjun Song, Yan Zhang, Zhiyong Li, Yongfang Wang, and Xue Liu et al. 2020. The bHLH transcription factor PPLS1 regulates the color of pulvinus and leaf sheath in foxtail millet (Setaria italica). Theoretical and applied genetics 133: 1911-1926. https://pubmed.ncbi.nlm.nih.gov/32157354/

Bushweller, John H. 2019. Targeting transcription factors in cancer—from undruggable to reality. Nature Reviews Cancer 19: 611-624. https://www.nature.com/articles/s41568-019-0196-7

Cao, Ruiji., Shaolu Zhao, Guiai Jiao, Yingqing Duan, Liuyang Ma, Nannan Dong, and Feifei Lu et al. 2022. OPAQUE3, encoding a transmembrane bZIP transcription factor, regulates endosperm storage protein and starch biosynthesis in rice. Plant communications 3: 1-15. https://www.sciencedirect.com/science/article/pii/S2590346222003005

Cramer, Patrick. 2019. Organization and regulation of gene transcription. Nature 573: 45-54. https://www.nature.com/articles/s41586-019-1517-4

Channaveerappa, Devika, Brian K Panama, and Costel C Darie. 2019. Mass spectrometry based comparative proteomics using one dimensional and two dimensional SDS-PAGE of rat atria induced with obstructive sleep apnea. Advancements of Mass Spectrometry in Biomedical Research 11:541-561. https://link.springer.com/chapter/10.1007/978-3-030-15950-4_32

Chen, Chun-Yen, Pei-Hsuan Lin, Kun-Hung Chen, Yi-Sheng Cheng. 2020. Structural insights into Arabidopsis ethylene response factor 96 with an extended N-terminal binding to GCC box. Plant molecular biology 104: 483-498. https://pubmed.ncbi.nlm.nih.gov/32813232/

Chen, Ling, Shuang Liu, and Yongguang Tao. 2020. Regulating tumor suppressor genes: post-translational modifications. Signal transduction and targeted therapy 5: 1-25. https://www.nature.com/articles/s41392-020-0196-9

Dorone, Y. 2020. Discovery of Novel Membraneless Organelles in Arabidopsis Thaliana: Stanford University.

Feng, Kai, Xi-Lin Hou, Guo-Ming Xing, Jie-Xia Liu, and Ao-Qi Duan et al. 2020. Advances in AP2/ERF super-family transcription factors in plant. Critical Reviews in Biotechnology 40: 750-776. https://pubmed.ncbi.nlm.nih.gov/32522044/

Forni, Cinzia, Daiana and Bernard R Glick. 2017. Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant and Soil 410: 335-356. https://link.springer.com/article/10.1007/s11104-016-3007-x

Gil, Raquel Sales, and Paola Vagnarelli. 2019. Protein phosphatases in chromatin structure and function. Biochimica et Biophys-ica Acta (BBA)-Molecular Cell Research 1866: 90-101. https://pubmed.ncbi.nlm.nih.gov/30036566/

Hajheidari, Mohsen, and Shao-shan Carol Huang. 2022. Elucidating the biology of transcription factor–DNA interaction for ac-curate identification of cis-regulatory elements. Current Opinion in Plant Biology 68: 1-9. https://www.sciencedirect.com/science/article/pii/S1369526622000619?via%3Dihub

Han , Huan, Caini Wang, Xiaoyan Yang, Lina Wang, Jiabao Ye, Feng Xu, Yongling Liao and Weiwei Zhang. 2023. Role of bZIP transcription factors in the regulation of plant secondary metabolism. Planta 258. https://pubmed.ncbi.nlm.nih.gov/373 00575/

Huang, Ye, Wenshu Wang, Hua Yu, Junhua Peng, Zhengrong Hu, and Liang Chen. 2022. The role of 14-3-3 proteins in plant growth and response to abiotic stress. Plant Cell Reports 41: 833-852. https://pubmed.ncbi.nlm.nih.gov/34773487/

Janota, Catia S., Francisco Javier Calero-Cuenca and Edgar R Gomes. 2020. The role of the cell nucleus in mechanotransduction. Current Opinion in Cell Biology 63: 204-211. https://pubmed.ncbi.nlm.nih.gov/32361559/

Jardine, Jane. 2020. Characterising the Function of the Mitochondrial Deubiquitylase USP30 in Mitophagy. The University of Liverpool 1-360. https://livrepository.liverpool.ac.uk/3112570/1/201208930_Dec2020.pdf

Kaur, Amanpreet. 2020. A novel maize dwarf resulting from a gain-of-function mutation in a glutamate receptor gene. Purdue University. https://hammer.purdue.edu/articles/thesis/A_Novel_Maize_Dwarf_Resulting_From_a_Gain-of-Function_Mutation_In_a_Glutamate_Receptor_Gene/12736229

Khan, Shagufta, Rakesh K. Mishra and Surabhi Srivastava. 2023. Epigenetic regulation of cis-regulatory elements and transcrip-tion factors during development. Perinatal and Developmental Epigenetics 32:71-113. https://www.sciencedirect.com/science/chapter/edited-volume/abs/pii/B9780128217856000049

Khan, Sardar-Ali, Meng-Zhan Li, Suo-Min Wang and Hong-Ju Yin. 2018. Revisiting the role of plant transcription factors in the battle against abiotic stress. International Journal of Molecular Sciences 19: 1-29. https://www.mdpi.com/1422-0067/19/6/1634

Kim, Backki, Sangrea Shim, Hongjia Zhang, Chunseok Lee, Su Jang, Zhuo Jin, Jeonghwan Seo, Soon-Wook Kwon and Hee-Jong Ko. 2023. Dynamic transcriptome changes driven by the mutation of OsCOP1 underlie flavonoid biosynthesis and embry-ogenesis in the developing rice seed. Journal of Plant Growth Regulation 42: 4436-4452. https://link.springer.com/article/10.1007/s00344-023-10909-0

Kimotho, Roy Njoroge, Elamin Hafiz Baillo, and Zhengbin Zhang. 2019. Transcription factors involved in abiotic stress respons-es in Maize (Zea mays L.) and their roles in enhanced productivity in the post genomics era. PeerJ, 7: https://peerj.com/articles/7211.pdf

Ku, Yee-Shan, Mariz Sintaha, Ming-Yan Cheung, and Hon-Ming Lam. 2018. Plant hormone signaling crosstalks between biotic and abiotic stress responses. International Journal of Molecular Sciences 19: 1-35. https://www.mdpi.com/1422-0067/19/10/3206

Lai, Xuelei, Hussein Daher, Antonin Galien, Veronique Hugouvieux, and Chloe Zubieta. 2019. Structural basis for plant MADS transcription factor oligomerization. Computational and Structural Biotechnology Journal 17: 946-953. https://www.sciencedirect.com/science/article/pii/S2001037019300753

Li, Xinjian, Gabor Egervari, Yugang Wang, Shelley L. Berger and Zhimin Lu. 2018. Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nature reviews Molecular Cell Biology 19: 563-578. https://www.nature.com/articles/s41580-018-0029-7

Liu, Hai-Ting Liu, Yong-Xin Zou, Wen-jie Zhu, Sen-Liu, Guo-hao Zhang, Ran-Ran Ma, Xiang-yu Guo and Peng Gao. 2022. lncRNA THAP7-AS1, transcriptionally activated by SP1 and post-transcriptionally stabilized by METTL3-mediated m6A modification, exerts oncogenic properties by improving CUL4B entry into the nucleus. Cell Death & Differentiation 29: 627-641. https://www.nature.com/articles/s41418-021-00879-9

Lu, Juane, Tao Wu, Biao Zhang, Suke Liu, Wenjun Song, Jianjun Qiao, and Haihua Ruan. 2021. Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Communication and Signaling 19: 1-10. https://link.springer.com/article/10.1186/s12964-021-00741-y

Ma, Ziming, Lanjuan Hu, and Wenzhu. 2024. Understanding AP2/ERF transcription factor responses and tolerance to various abiotic stresses in plants: A comprehensive review. International Journal of Molecular Sciences 25: 1-22. https://www.mdpi.com/1422-0067/25/2/893

Marathe, Sarika, Erich Grotewold, and Marisa S Otegui. 2024. Should I stay or should I go? Trafficking of plant extra-nuclear transcription factors. The Plant Cell 36: 1524-1539. https://pubmed.ncbi.nlm.nih.gov/38163635/

Matilla, Angel J. 2024. Current Insights into Weak Seed Dormancy and Pre-Harvest Sprouting in Crop Species. Plants 13: 1-23. https://www.mdpi.com/2223-7747/13/18/2559

Meena, Rajendra Parasad, Gourab Ghosh, Harinder Vishwakarma, and Jasdeep Chatrath Padaria. 2022. Expression of a Pen-nisetum glaucum gene DREB2A confers enhanced heat, drought and salinity tolerance in transgenic Arabidopsis. Molecular Biology Reports 49: 7347-7358 https://pubmed.ncbi.nlm.nih.gov/35666421/

Mitsis, Thanasis, Aspasia Efthimiadou, Flora Bacopoulou, Dimitrios Vlachakis, George P. Chrousos, and Elias Eliopoulos. 2020. Transcription factors and evolution: an integral part of gene expression. World Academy of Sciences Journal 2: 3-8. https://www.spandidos-publications.com/10.3892/wasj.2020.32

Muñoz-Díaz, Eduardo, and Julio Sáez-Vásquez. 2022. Nuclear dynamics: Formation of bodies and trafficking in plant nuclei. Frontiers in Plant Science 13: 1-22. https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.984163/full

Niñoles, Regina, Carmen Maria Ruiz-Pasto, Paloma Arjona-Mudarra, Jose Casañ, Joan Renard, Eduardo Bueso, Ruben Mateos, Ramón Serrano, Jose Gadea. 2022. Transcription factor DOF4. 1 regulates seed longevity in Arabidopsis via seed permea-bility and modulation of seed storage protein accumulation. Frontiers in Plant Science 13:1-14. https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.915184/full

Rahman, M. A. 2019. Rice (Oryza sativa) Receptor for Activated C Kinase1B (OsRACK1B) Regulates Chlorophyll Catabolism, Oxidative Stress Signaling and Pollen Development Pathways. Howard University.

Richardson, Richard B., and Ryan J Mailloux. 2023. Mitochondria need their sleep: redox, bioenergetics, and temperature regula-tion of circadian rhythms and the role of cysteine-mediated redox signaling, uncoupling proteins, and substrate cycles. Antioxidants 12: 1-3. https://www.mdpi.com/2076-3921/12/3/674

Scheres, Ben, and Wim H. Van Der Putten. 2017. The plant perceptron connects environment to development. Nature 543: 337-345. https://www.nature.com/articles/nature22010

Shrikondawar, Akshaykumar Nanaji, Kiranmai Chennoju, Debasish Kumar Ghosh, and Akash Ranjan. Identification and func-tional characterization of the nuclear and nucleolar localization signals in the intrinsically disordered region of nucleome-thylin. Journal of Cellular Physiology 239. https://pubmed.ncbi.nlm.nih.gov/39245872/

Stafen, Cássia Fernanda, Iara Souza, Ben Hur de Oliveira, Luísa Abruzzi de Oliveira-Busatto, Rodrigo Juliani Siqueira Dalmolin, Oscar Lorenzo Sánchez, Felipe dos Santos Maraschin. 2022. A survey of transcriptomic datasets identifies ABA-responsive factors as regulators of photomorphogenesis in Arabidopsis. bioRxiv: 1-35. https://www.biorxiv.org/content/10.1101/2022.07.24.501316v1

Suter, David M. 2020. Transcription factors and DNA play hide and seek. Trends in Cell Biology 30: 491-500. https://pubmed.ncbi.nlm.nih.gov/32413318/

Tan, Maxine H Tan, Sarah R Smith, Kim K Hixson, Justin Tan, James K McCarthy, Adam B Kustka, and Andrew E Allen. 2020. The importance of protein phosphorylation for signaling and metabolism in response to diel light cycling and nutrient availability in a marine diatom. Biology 9: https://pubmed.ncbi.nlm.nih.gov/32640597/

Kim Theilgaard-Mönch, Sachin Pundhir, Kristian Reckzeh, Jinyu Su, Marta Tapia, Benjamin Furtwängler, Johan Jendholm, Ja-nus and Schou Jakobsen et al. 2022. Transcription factor-driven coordination of cell cycle exit and lineage-specification in vivo during granulocytic differentiation: In memoriam Professor Niels Borregaard. Nature Communications 13: 1-7. https://www.nature.com/articles/s41467-022-31332-1

Bao Gia Vu, Mark A Stamnes, Yu Li, P David Rogers and W Scott Moye-Rowley. 2021. The Candida glabrata Upc2A transcrip-tion factor is a global regulator of antifungal drug resistance pathways. PLoS genetics 17: https://pubmed.ncbi.nlm.nih.gov/34591857/

Juan Wang, Zichun Chen, Qing Zhang, Shanshan Meng, Cunxu Wei. 2020. The NAC transcription factors OsNAC20 and Os-NAC26 regulate starch and storage protein synthesis. Plant physiology 184: 1775-1791. https://pubmed.ncbi.nlm.nih.gov/32989010/

Wang, Lei, Linling Liu, Jiali Zhao, Chenglei Li, Huala Wu, Haixia Zhao, Qi Wu. 2023. Granule-Bound Starch Synthase in plants: towards an understanding of their evolution, regulatory mechanisms, applications, and perspectives. Plant Science 336. https://www.sciencedirect.com/science/article/pii/S0168945223002601

Wang, Zhixiang. 2021. Regulation of cell cycle progression by growth factor-induced cell signaling. Cells 10: https://pubmed.ncbi.nlm.nih.gov/34943835/

Wani, Shabbir Hussain, and Vinay Kumar. 2020. Heat stress tolerance in plants: physiological, molecular and genetic perspec-tives: John Wiley & Sons. https://onlinelibrary.wiley.com/doi/book/10.1002/9781119432401

Weidemüller, Paula, Maksim Kholmatov, Evangelia Petsalaki, and Judith B Zaugg. 2021. Transcription factors: Bridge between cell signaling and gene regulation. Proteomics 21: 23-24. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/pmic.202000034

Xie, Wei, Chaoqing Ding, Haitao Hu, Guojun Dong, Guangheng Zhang, Qian Qian, Deyong Ren. 2022. Molecular events of rice AP2/ERF transcription factors. International Journal of Molecular Sciences 23. https://pubmed.ncbi.nlm.nih.gov/36233316/

Xie, Zhouli, Trevor M. Nolan, Hao Jiang, and Yanhai Yin. 2019. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis. Frontiers in Plant Science 10: 1-17. https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2019.00228/full

Yadav, Ashokkumar Ramakrishna, Vaishnavi Ashokkurmar, Senthilkumar Palanisamy, and Muthusamy, S. 2023. Role of DREB genes in the regulation of salt stress-mediated defense responses in plants. Journal of Applied Biology & Biotech-nology 11. https://www.semanticscholar.org/paper/Role-of-DREB-genes-in-the-regulation-of-salt-in-Yadav-Ashokkumar/7e7f33469e f0541a9ec03efcf96ac216f8b01f92

Jie ,Yang, Xing Zhang, Robert M Blumenthal, Xiaodong Cheng. 2020. Detection of DNA modifications by sequence-specific transcription factors. Journal of Molecular Biology 432: 1661-1673. https://pubmed.ncbi.nlm.nih.gov/31626807/

Yang, Tao, Haonan Wang, Liangxing Guo, Xingguo Wu, Qiao Xiao, Jiechen Wang, Qiong Wang, Guangjin Ma, Wenqin Wang, and Yongrui Wu. 2022. ABA-induced phosphorylation of basic leucine zipper 29, ABSCISIC ACID INSENSITIVE 19, and Opaque2 by SnRK2. 2 enhances gene transactivation for endosperm filling in maize. The Plant Cell 34: 1933-1956. https://pubmed.ncbi.nlm.nih.gov/35157077/

Yu, Song, Mingxu Wu, Xiaoqin Wang, Mukai Li, Xinhan Gao, Xiangru Xu, Yutao Zhang, Xinran Liu, Lihe Yu and Yifei Zhang. 2024. Common Bean (Phaseolus vulgaris L.) NAC Transcriptional Factor PvNAC52 Enhances Transgenic Arabidopsis Re-sistance to Salt, Alkali, Osmotic, and ABA Stress by Upregulating Stress-Responsive Genes. International Journal of Mo-lecular Sciences 25: 1-21. https://www.mdpi.com/1422-0067/25/11/5818

Zhang, Xiaopei, Wei Wang, Weidong Zhu, Jie Dong, Yingying Cheng, Zujun Yin, and Fafu Shen. 2019. Mechanisms and func-tions of long non-coding RNAs at multiple regulatory levels. International journal of Molecular Sciences 20: 1-29. https://www.mdpi.com/1422-0067/20/22/5573

Zhang, Yan, and Pengguo Xia. 2023. The DREB transcription factor, a biomacromolecule, responds to abiotic stress by regulating the expression of stress-related genes. International Journal of Biological Macromolecules 243. https://pubmed.ncbi.nlm.nih.gov/37301338

Zheng, Xixi, Qi Li, Changsheng Li, Dong An, Qiao Xiao, Wenqin Wang, and Yongrui Wu. 2019. Intra-kernel reallocation of pro-teins in maize depends on VP1-mediated scutellum development and nutrient assimilation. The Plant Cell 31: 2613-2635. https://pubmed.ncbi.nlm.nih.gov/31530735/

Zhou, Runnan, Sihui Wang, Jianwei Li, Mingliang Yang, and Chunyan Liu et al. 2024. Transcriptional and Metabolomic Anal-yses Reveal That GmESR1 Increases Soybean Seed Protein Content Through the Phenylpropanoid Biosynthesis Pathway. Plant, Cell & Environment. https://pubmed.ncbi.nlm.nih.gov/39483062/

Zuo, Zhi-Fang, Hayo-Yeon Lee, and Hong-Gyu Kang. 2023. Basic hélix-loop-helix transcripción factor: Regulators for plant growth development and abiotic stress responses. International Journal of Molecular Sciences 24. https://pubmed.ncbi.nlm.nih.gov/36674933/

Downloads

Published

2025-12-09

Issue

Section

Reviews

How to Cite

Molecular Concept of Transcription Factor in Crop Plant. (2025). Pharmabiologia, 1(1). https://pharmabiologia.com/OJS3/article/view/2